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The implicitly updated Arnoldi method introduced by Sorensen
with an internal QR-iteration is a very useful eigenvalue solver for
nonsymmetric eigenvalue problems. To make this method rigorous
in finding internal eigenvalues, a complex shift-and-invert strategy
is used. Therefore a complex variant of the method has been con-
structed and the methed has been compared with a Lanczos
methed, as implemented by Cullum et al., for a practical problem
in magnetohydrodynamics. © 1995 Academic Press, Inc.

1, INTRODUCTION

Magnetoltydrodynamics (MHD) involves the study of the
interaction of an ionized gas (a plasma) and a magnetic field.
The MHD equations describe the macroscopic behaviour of a
plasma in a magnetic field. These equations form a system of
coupled nonlinear partial differential equations. A normal mode
anidysis of the lincarized MHLD equations leads (0 a complex
cigenvalue probleim, A linite clement discretization in combina-
tion with the Galerkin method then yields an eigenvalue prob-
lem of the standard form

Ax = ABx, (1)
with A the (complex) eigenvalue, A a non-Hermitian matrix,
and B a symmetric and positive definite matrix. Due to the use
of finite elements for the spatial discretization, the matrices A
and B have a tridiagonal block structure.

Many problems in physics and engineering require the dis-

* The authors thank Sander Belién for his usefut contributions to the optimi-
zation of the applied codes.

cretization of partial differential equations and lead to a complex
eigenvalue problem of the form (1). In quantum mechanics,
c.g., the operators involved are Hermitian. These operators
can always be diagonalized which led to the beautiful spectral
theory., The MHD equivalent of this, however, requires the
solution of nonsymsmetric eigenvalue problems which is still
by no means standard. Yet, MHD spectroscopy [6, 7} holds
promises for the better understanding of magnetically confined
plasmas. This is crucial for progress in controiled thermonuclear
fusion research and for a deeper insight in the dynamic behavior
of magnetic structures on the sun and other stars. In this paper
we introduce a complex variant of the implicitly updated Ar-
noldi method [18} as a rigorous solver of this specific MHD
eigenvalue problem. This method may be applied to any similar,
generalized eigenvalue problem as this method is very accurate
and competitive with any other eigenvalue solver,

In MHD problems the eigenvalues come in conjugate com-
plex eigenpairs and refer to three types of modes: the fast
magnetosonic modes, the Alfvén modes, and the slow magne-
tosonic modes. For the stability of magnetically confined plas-
mas one is mainly interested in the Alfvén spectrum. It has
been shown [11] that the desired eigenvalues lie on curves in
the complex plane (see Fig. 5). The eigenvalues which are of
interest belong to the Alfvén branch. In the sirongly magnetized
plasmas that are studied in the laboratory in the context of
controlled thermonuclear fusion research, as well as in the
elongated magnetic loops observed on the solar corona, the
eigenvalues of the Alfvén branch are small in magnitude com-
pared with the extreme eigenvalues. The fast magnetosonic
eigenvalues belonging to the fast magnetosonic subspectrum are
very dominant and increase in magnitude as the discretization of
the MHD equations is refined. The Aifvén part of the spectram
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is therefore dominated by unwanted eigenvalues in the fast
magnetosonic spectrum, and for this reason the application of
a (complex) shift and invert strategy is needed to make the
desired part of the spectrum dominant. Using a shift o in Eq.
(1), we derive the new eigenvalue problem

withA = (A — oB) 'Band u =

Ax =, e @

The choice of an optimal shift o is surely not trivial. When o
is chosen complex, A becomes a matrix with complex elements
and (2) becomes a complex eigenvalue problem; while choosing
o real we keep real arithmetic, which is an advantage in actual
computing. This will be discussed more extensively in Sec-
tion 3.

A popular algorithm for finding a few eigenvalues in large,
symmetric eigenvalue problems is the Lanczos method [9].
This method has been extended for the nonsymmetric problem.
Examples are the two-sided Lanczos method [3] and an orthogo-
nal extension, the Arnoldi method [1]. The Lanczos method
will be discussed briefly in Section 4. The Arnoldi method has
the nice property that the appearance of spurious eigenvalues,
when solving the generalized eigenvalue problem, may be
avoided because of the complete orthogonalization of the Ar-
noldi vectors. However, high computational costs and a large
demand for data storage have made the regular Arnoldi method
rather unpopular. Aliernatives for the nensymmetric case, the
k-step Arnoldi methods, have been proposed in various publica-
tions (e.g. in [16, 17, and 2}}. Those methods have the advantage
of low storage requirements. This is conceived by trying to
approximate an invariant subspace of dimension & correspond-
ing to k desired eigenvalues of A by restarting the Arnoldi
factorization after k steps. However, important information is
typically lost after a restart. This is partly solved in [13] where
the Arnoldi factorization is restarted after k + p sieps with a
vector composed of the k Ritz vectors, which approximate
the desired, invariant subspace in some sense. The explicit
computation of the Ritz vectors is very expensive, and it would
be more advantageous to make a cheap update of the k-dimen-
sional subspace, created by the Arnoldi factorization, every
iteration step and iteratively force the residual to zero. Such
an alternative approach for computing an invariant subspace
of order k was proposed by Sorensen [18].

In this method one starts with & Arnoldi steps to create an
initial approximation of the invariant subspace of dimension
k corresponding to k desired eigenvalues. This subspace is
repeatedly expanded with p vectors found through the Arnoldi
iteration. On this & + p dimensional subspace an implicitly
shifted QR iteration with p implicit shifts (the unwanted Ritz
values) is applied, which compresses the desired information
into the first k& vectors and drives the residual in the projected
operator to zero. In DPemmel et al. [4] it is noted explicitly that
the computed k dimensional space after i times of this expansion
and compression process will be a subset of the £ + i X p
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dimensional subspace one would get without compression. One
may expect that the intersection of the desired invariant sub-
space with this compressed subspace will be close to the inter-
section with the larger k + { X p dimensional subspace. Our
experiments indicate this to be a successful approach for MHD
problems as well.

In Section 2 we give a brief overview of the implicitly
updated Arnoldi method (IUAM) in which we closely follow
the presentation of [18]. For further details we refer the reader
to this paper.

2. THE IMPLICITLY UPDATED ARNOLDI METHOD
The Arnoldi methed is used to produce orthonormal vectors

U1, Ua, ... such that after & steps the matrix A is projected into
a (k X k) upper Hessenberg matrix H,:

. H,
AV, = Vil + nel = (Vi, Un) ( T), €))
Biek

where r; is the residwal orthogonal 1o V;; l.e.,

Vir, =0,
B = “"k”
Vin = B‘kﬁc-

It is a well-known fact that v, ..., v, form ap orthonormal
basis for the Krylov subspace spanfv,, Av,, .., A*'v\} (see
for example [5]). The Arnoldi method becomes increasingly
expensive for growing k. Instead of a complete restart after &
iterations an analogue of the implicily shifted QR iteration
is used.

The Krylov subspace is expanded by p Amoldi steps, so that
the projection of A is a (k + p) X (k + p) upper Hessenberg
matrix Hyy,:

, . Hisy
AVk+p = Vk+pH.k+p F Fepliyp = (Vk+p, Uk+p+l) r o} (4
Bk+pek+p

Let 6 be a shift and let (H,., — 6;I} = OR be an explicitly shifted
QR-step, with @ orthonormal and R upper triangular. Then

(A = 0NVia, — VirsHiry — 61 = respeliy, (5)
(A = 81V, — Vie OR) = ripeley, (6)

A = 61V s0 — Vi, ORO) = risnel @, ()
AV = (Vi RO + 61 = npel .0 (8)

With # = RQ + 61, H is upper Hessenberg, and ¥ = V,.,Q
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is an orthonormal matrix. With an impilicit shift strategy and
combining (4) and (8) we find

AV = (Vi 0s Uiops) (QHH*: "Q), )
BripeinpQ
or, after applying p implicit shifts,
. H'

where V© =V, 0, H* = 0"H,.,0.and 0 = Q.0 - Q,. O,
is the orthonormal matrix associated with the shift 6,.
Note that:

* H*' is the upper Hessenberg matrix after p QR-iterations
on Hi, [8].

* Bieli,0 = (0,0, .., B, b,
————

i P
with é as the kth coefficient.

With a partition of V' in a (¢ X k)-block, and a (p X p)-
block, and A* in four blocks

V+ = (VL V),

Rl
- Belef H; |

Eq. (10) can be reformulated as

Hf M
AWVE VD) = (VL VE v | Beel HP |
Bel
Equating the first £ columns on both sides of (11) gives
AV = ViHE + rre], (12)
so that
AV = (Vi uh) ( H ) (13)
= * v k]
T e

where v = (1/BYr*, r* = (Ve + vyrp B, and B = |Ir|.
Note that (V/)}*Vie, = 0 and (V{)*v4sps1 = 0. Thus (13) is a
legitimate Arnoldi factorization of A. Again a k-dimensional
Krylov subspace Ki{(A; v{) is found, which can be expanded
repeatedly by p additional Arnoldi steps, instead of restarting
the Arnoldi iteration. With a suitable choice of the p shifts in
QR the first ¥ Amoldi vectors are updated, so that Bv'e] is
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iteratively forced to zero in {13) and the k-dimensional subspace
spanned by the columns of V{ into the desired invariant sub-
space of A. For the p shifts the unwanted Ritz vatues are used,
which are found through a QR-iteration on Hy,. Because k +
p <€ N this QR-iteration will be modest in storage requirements
and computaiional cosis. In the present paper the unwanted
values are the Ritz values with smallest modulus.
The algorithm can be described as follows:

ALcorITHM 1: THE IMpLICITLY UPDATED ARNOLDI ALGO-
RITHM.

) Select . vy, k, p, tol;
(1) Initialize: V, = v;; H = vfv;n = Av, — v,H,;
2) Start : do k Arnoidi steps to get Vi, H;, ry;
(3)  While [ = tol do
(N Do p additional Arnoldi steps;
(2) Calculate the Ritz values through Hy,, =
QR:
3 Select the p unwanted Ritz values as shifts;

{4 Apply an implicit QR-iteration with p shifts
to ﬁﬂd Vl:ﬂn Hl?rﬂ;;

A I,
(5 Vi= Vi 0 s Ho= (o 0) Hy, o)

(6 ro= (e + FeipTip)s
where g;,, = e;’:+pQ-’(+pek;

Note that this method may converge very fast, because the
residual is reduced every iteration step by applying p Arnoldi
steps and p QR steps. Paige [10] has shown that the Lanczos
iteration with a good initial vector forces v*e] — 0 in the
symmetric case. Since after every update the new initial vector
is berter, one may expect that this process will converge even
faster. Although there are counterexamples, similar observa-
tions have been made for the nonsymmetric case. In the Arnoldi
process the quantity |8°] may not be expected to be small.
However, the QR-iteration is known to have the property to
force |87) — O after every iteration step [8]. It is because of
this ‘‘double’” effect that this process may be so effective.

In the symmetric eigenvalue problem this combination of
the Arnoldi method with an internal QR-iteration with p implicit
shifts guarantees convergence [18]. In the nonsymmetric case
the choice of real shifts may not be the optimal one. Usually
the shifts are selected by a strategy based on the absclute value
of the Ritz values. Although this occasionally may lead to poor
convergence (Sorensen suggests other strategies) we have not
encountered any difficulty with this strategy in our experiments.

3. APPLICATION OF A COMPLEX SHIFT AND INVERT
STRATEGY

Iterative methods like Lanczos and Amoldi usually converge
to the dominant part of the eigenvalue spectrum, i.e., the extre-
mal eigenvalues. In many physical systems one is interested in
an internal part of the eigenvalue spectrum, such as the Alfvén

1
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spectrum in MHD problems. To be able to find this part of the
spectrum a transformed eigenvalue spectrum is needed in which
the desired eigenvalues are enhanced to the dominant part of
the spectrum. Applying a shift and invert strategy, as defined
in (2), the new problem Ax = ux has eigenvalues

1

with A; the solutions of (1). If the shift ¢ is chosen close to the
desired eigenvalues, then these eigenvalues will appear in the
transformed problem as eigenvalues with prominent magni-
tudes. With a good choice of o these eigenvalues may be well
separated from the other eigenvalues, and hence convergence
will be fast. In the nonsymmetric eigenvalue problem (1) A
and B are real, banded matrices, but the eigenvalues A; may
come in complex conjugate patrs. To isolate a certain part of
the eigenvalue spectrum a complex o in (2) is necessary. In
some cases a real shift is sufficient to locate certain eigenvalues,
but in MHD this is typically not sufficient. Already in relatively
small problems (i.e., N = 416} no convergence occurred. A
complex shift is needed and therefore A in (2) is complex.

The major costs for computation and storage in the implicitly
updated Arnoldi method come from the Arnoldi iteration: every
iteration step y = Bv; is computed, (A — oB)v;;, = y is solved
by an LU-decomposition, and v, is orthogonalized against
Uy, .., U;. The internal QR-iteration takes only a small amount
of time and storage. The costs of computation in complex
arithmetic are nearly four times higher than in real arithmetic,
and the storage requirements for complex numbers are twice
the storage requirements for real numbers. Hence, keeping the
computations in real arithmetic might be advantageous. To
suppress computational costs, two goals can be formulated [12],
which unfortunately can be in conflict:

1. stay in real arithmetic,
2. preserve any special structure of A and B, such as a
band structure.

Goal 2 restricts our definition of A, e.g. when B is invertible
equation (1) can be reformulated as

(B7'A — ol)x = ux,

but with the implementation of A = (B™'A — o) we loose the
band structure in A, and A becomes a dense matrix.

A trick can be used to stay in real arithmetic. The transformed
eigenvalue problem (2) can be augmented to

— B )—I(B 0)
A-aB) \0 8777

where o = oy + i o». This new eigenvalue problem is of order
2N, which increases the computational costs. The eigenvalues

(A - (TlB
(14}

(T}_B
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¥ nOwW come in pairs g, as in Eq. (2), and @, The eigenvectors
v relate to the eigenvectors in (2):

() ()7
= X or = X.
Y i'IN Y I["IN

With this suggestion the computations stay in real arithmetic,
but the price may be high: The size of the problem is doubled,
and the desired eigenvalues corresponding to the eigenvalues
i Eq. (2) have to be identified. To find these true eigenvalues
of the original problem,

AUGD)Y — ABUILO)Y],  with A = l,, +a,

needs to be checked to select the desired eigenvalues. This
already implies a large amount of overhead, because all the
eigenvectors are necessary while the actually desired eigenvec-
tors could be obtained by a much cheaper inverse vector itera-
tion. The introduction of conjugate eigenvalues i implies some
other negative effects as well:

* slow convergence occurs because of the “‘clustering’” of
desired and conjugate eigenvalues around the shift o (see
Fig. 3);

* to identify the k desired eigenvalues at least 2 - k eigenval-
ues in the real arithmetic problem (i4) have to be determined;

* the bandwidth of A is increased by N.

For completeness we mention that Parlett and Saad [12]
investigated the complex shift-and-invert strategy in real arith-
metic. Their aim was to find eigenvectors through a subspace
iteration, solving (2) but satisfying goals 1 and 2. They suc-
ceeded partly with a slightly different approach from ours: the
banded structure was maintained, but a complex LU-decompo-
sition to solve (A — oB)v,,, = By, was necessary. The other
steps in the Arnoldi iteration could be continued in real arithme-
tic. However, they too could not avoid the introduction of
conjugate eigenpairs through the augmentation of the original
problem. The above considerations have led us to use a complex
shift-and-invert strategy and to do our computations in complex
arithmetic. Therefore a complex implementation of the IUAM
has been constructed.

4. COMPARISON WITH A GENERALIZED
LANCZOS METHOD

A frequently used method for large eigenvalue problems
{N > 1500} in MHD is a generalized Lanczos solver, which
was introduced by Cullum et @l [3]. This nonsymmetric, two-
sided Lanczos method uses, like our approach, the complex
shift-and-invert strategy and transforms A into a tridiagonal,
complex, symmetric form 7T, of order n. The eigenvalues of
T,, the Ritz values of A, are approximations of the eigenvalues
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of A. In [3] several difficulties are discussed that may occur
when solving nonsymmetric eigenvalue problems in general
and the MHD problem in specific. Because most of those diffi-
culties are similar to those for any eigenvalue solver we refer
the reader to that article for details.

However, an important difference between the Lanczos
methed and the Arnoldi method is the orthogonalization of the
Arnoldi vectors, which prevents spurious eigenvalues and the
loss of accuracy because of a nonorthogonal transformation. A
powerful property of the Lanczos method, on the other hand,
is the low storage costs, because only six vectors need to be
stored in total. In the Arnoldi method the storage of a vector
per iteration is needed to be able to orthogonalize every new
vector against the others. If ¥ + p <€ N is chosen, then the data
storage will be modest for the complex IUAM. Because of this
orthogonalization beiter approximations of the eigenvalues may
be expected. If k is selected too large, then no convergence
may occur, because it is possible that the k desired eigenvalues
are not well separated from the unwanted part of the spectrum.
Therefore the use of more than one complex shift o; in the
shift-and-invert strategy may be necessary for large eigenvalue
problems. Together with the user defined variables k and p, the
method can be directed toward any relevant part of the spectrum
of a generalized eigenvalue problem.

Several experiments with typical eigenvalue problems were
executed in MHD. The single-fiuid linearized MHD equations
can be written in the following form in dimensionless units:

o

P =V (av), (15)
av,
PO-'E ==V (T, + pT) + (V X By) X By
+ (VX B} X By, (16)
aT
P = v VI = (v = Dada Vv, (17)
oB,

The resistivity, m, is assumed to be constant and the ratio of
the specific heats, v, is taken to be 3. In these equations p, T,
B, and v are the plasma density, the temperature, the magnetic
field, and the plasma velocity, respectively. The subscript O
denotes an equilibrium quantity and subscript 1 denotes a Eu-
lerian perturbation of the equilibrium quantity. Equations (15)—
(18) are the continuity equation, the momentum equation for a
nonviscous plasma, the equation for the variation of the internal
energy, and the induction equation, respectively. The induction
equation includes the Ohmic term due to the finite electric
conductivity of the plasma. The resistive MHD equations have
been linearized around a static equilibrium, ie. v = 0 and
d/dt = 0 when it operates on an equilibrium quantity. The
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divergence equation, V-B, = 0, serves as an initial condition
on B : owing to Eg. (18), an initially divergence-free magnetic
field will remain divergence-free. In the present paper a cylin-
drical plasma column is considered. In cylindrical coordinates
r, 8 and 7 the linearized MHD equations (15)-(18) form a
system of eight partial differential equations for eight un-
knowns, viz. p, Uy, V1. Uy, 11 Birs Byy, and B),, which is to
be completed with appropriate boundary conditions.

The discretization of the system (15)~(18) is very similar to
the discretization used in [3], but contains some differences.
We will give the main steps of the discretization and stress the
differences with the above-mentioned article. In the cylindrical
plasma considered, the equilibrium quantities do not depend
on # and z. Therefore, the separation problem

filtr, 8.2, 8) = filr; et (19)
is suitable for the perturbed quantities f, . Here, the wave number
m is an integer and the wave number k = 27n/L is quantized,
with L the length of the cylinder. With the separation form (19)
the system (15)—(18) reduces to a set of partial differential
equations in r and ¢. In [3] an equivalent system is solved with
variables v,, py, and B, {p, is the plasma pressure). In order
to assure that the magnetic field is divergence-free, the #-com-
ponent of the magnetic field was eliminated by means of
V- B, = 0. This method has the disadvantage that it only applies
to the case m # 0. In the present paper, therefore, the diver-
gence-free condition on the magnetic field is satisfied in an
alternative, more expensive, but more general way by express-
ing the magnetic field in terms of a vector potential A;

B =V XA (20)
In this alternative the system of ordinary differential equations
describing the normal modes (with a time dependence propor-
tional to e™™) can be written in the form

(R — iwS) u =0, 2D

where u is a state vector defined as
uT= (ﬁ)! Uy, Us, U3,?‘,A1,A2,A3), (22)

with these variables defined as

p=rp, T:?’Th (23)
Ul = Vi, Al = iAra (24)
v, = i(Bov1g — Bogl1.), Ay = rAy, (25)
iy — irv1z, A3 = A:. (26)

The resistive MHD operator is represented by matrices R and
S containing differential operators and equilibrium quantities.
The system (15)—(18) is then discretized by means of a very
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FIG. 1. Results of the Lanczos method (O) and the real IUAM (X) for

7 =10""and N = 416 (NG = 26) on a Cray-YMP.

accurate finite-element method, as discussed in {14]. Note that
we now have eight equations for the eight unknowns defined
above, whereas previously in [3] only six equations for the six
unknowns vy, Ui, U, Pi. By, and B;, were exploited.

A finite-element discretization producing very accurate re-
sults by using a combination of cubic Hermite and quadratic
finite elements is implemented. The components of the state
vector u are approximated by a finite, linear combination of
local expansion functions hf (r) and k% (r):

W)~ X ab 0+ a0, k=1,..8, (2D
with coefficients af ; and a} ;. Cubic Henmite finite elements are
used for vy, A,, and A;, and quadratic finite elements for , v,
vy, T, and A, . The introduction of two orthogonal shape func-
tions per interval and per component of u raises the number
of unknowns to 16NG, with NG the number of grid points. An
application of the Galerkin method then leads to an eigenvalue
problem of the form (1), where A = —i- w denotes the eigen-
value and the matrices A and B are matrices in tridiagonal block
form with blocks of size (16 X 16).

In our experiments we consider the modified eigenvalue
problem (2) with A and B the matrices obtained from a test
problem for a straight tokamak (periodic cylinder) surrounded
by a vacuum and a perfectly conducting wall. The resistivity
77 18 unequal to zero. The resistive MHD spectrum of a straight
tokamak consisis of discrete eigenvalues which lie on well-
defined curves in the complex plane. These curves become
independent of the plasma resistivity in the limit n — (. How-
ever, the number density of eigenvalues on these curves in-
creases as 1 decreases. The Alfvén modes lie on a curve at the
left side of the complex plane with a bifurcation point relatively
close to the imaginary axis. The corresponding eigenfunctions
are characterized by oscillatory behaviour. Hence, decreasing
7 requires an increase of the number of radial mesh points NG.
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Insufficient radial resolution, i.e., choosing NG too small, leads
to spurious eigenvalues and incorrect Alfvén curves (see Exper-
iment 1). In our experiments we varied both n and NG, the
number of gridpoints. A smaller choice of 1 will imply a larger
choice of NG, and the eigenvalue problem will become larger
and will therefore be harder to solve. Bad convergence will
occur around the bifurcation point when 7 is small, typically
7 << 5 X 1075, due to the near dependency of the eigenfunctions
around this point.

Experiments

The aim of the present paper is to show the rigor of the
complex [IUAM compared with the Lanczos method. It is found
that the complex TUAM gives more accurate results than
Lanczos. Moreover, with the new method more eigenvalues
could be determined in less CPU time. Three experiments will
be considered to support this statement. Experiment 1 {(an MHD
problem solved by the IUAM in real arithmetic) was mainly
included to prove the necessity of complex arithmetic solving
for the nonsymmetric eigenvalue problem. Experiments 2 and
3 are MHD problems of different order, which are solved by
the Lanczos method and the complex IUAM. To make a fair
comparison between these two methods we used the same
convergence criterion, which was proposed by Paige [10], and
the same shifts ;. The experiments were carried out on a Cray-
YMP. To draw any conclusions on the accuracy of the methods
the same MHD eigenvalue problems were solved on an IBM-
3090 by a Lanczos method and refined by an inverse vector-
iteration method. The IBM-3090 has a higher machine precision
than the Cray-YMP. (A measure for the machine precision is
g, the smallest number on the computer for which 1 + £ ¥ 1.
The IBM-3090 has an & which is 30 times smaller than the &
on the Cray-YMP). The results found on the IBM-3090 are
plotted in Figs. 1-5 (O).

Experiment 1. For n = 107" an equidistant radial grid with

0.70 I L B B e e

&
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w||il||‘IIY||\||\||I\||\|I\||_\I_V]
L
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T

AARARA

PRI SR ST NS T RPN NNV SO S VI S S T M B A T

-6 -05 -04 -0.3 0.2 -0.1 0.0

Rel(r)

=
-

FIG. 2. The results of Lanczos on a Cray-YMP (X) and the “‘comrect’”
Alfvén curve (O), for n = 107 and & = 1616 (N = 101).
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FIG. 3. The results of complex IUAM on a Cray-YMP (X) and the ““cor-
rect’” Alfvén curve (O), for 7 = 107> and N = 1616 (N = 101),

26 gridpoints (N = 416) was used. We solved (14) by the
IUAM in real arithmetic, using only one shift & = (0.3, 0.5).
In Fig. 5 approximations of the eigenvalues found by the real
IUAM (X), and by the Lanczos method (O) were plotted. For
the IUAM k = p = 30 was chosen, and for the Lanczos method
we computed a tridiagonal matrix 75, of order 50 (for details
see [3]). We note that the choice of NG = 26 for the given 5
led to spurious eigenvalues in the Alfvén branch of the spectrum
(compare these results with Fig. 5 in which the Alfvén branch
found by the complex IUAM is plotted for n = 107" and NG =
201). Due to computer memory requirements of the IUAM in
real arithmetic (the bandwidth of A in experiment 1 is 447),
increasing NG would lead to very high storage costs. The IUAM
converged in 3 iterations and yields 30 approximations of eigen-
values. However, only 15 approximations are approximations
of the eigenvalues of the original problem (1). One may note
the clustering of the desired and conjugate eigenvalues around
o (*). When no information about the location of the Alfvén
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FIG. 4. The vesults of Lanczos on a Cray-YMP (X) and the *‘correct’”
Alfvén curve (O), for p = 107" and N = 3216 (N = 201).
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branch is available it will be very hard to distinguish the desired
and conjugate gigenvalues without any extra computations like
the ones we mentioned in Section 3. The accuracy of the approx-
imations of the desired eigenvalues is equal for both methods,
but it took the ITUAM over 10 sec of CPU time to converge,
whereas the Lanczos method needed only 2.76 sec to find 23
eigenvalues of the Alfvén branch of the spectrum. In the other
experiments we therefore used a complex version of the [UAM
which has less restrictive computer memory requirements and
leads to better results.

Experiment 2. For resistivity 11 = 1077 an equidistant radial
grid with 101 gridpoints (¥ = 1616} is fine enough to give a
physicaily correct Alfvén spectrum, i.e., the MHD eigenvalue
problem is well defined and the Alfvén branch of the spectrum
contains no spurious eigenvalues. We used three shifts, o =
(—0.01, 0.60), oz = (—0.25, 0.55), and oy = (—0.50, 0.20),
to conceive the complete upper branch of the Alfvén curve
solving {2) by both methods. In the Lanczos method a tridiago-
nal matrix of order 50 was repeatedly computed and in the
complex IUAM k = 10 and p = 20 were chosen. In Fig. 5 the
approximations of the eigenvalues found by the Lanczos
method and the complex IUAM are plotted by O, X, respec-
tively. For this relatively small MHD problem both methods
converged quite well. The Lanczos method identified the upper
part of the Alfvén branch in 12.3 sec Cray CPU time, and the
complex TUAM needed 16.0 sec to find the upper part of the
Alfvén branch, 1 eigenvalue on the imaginary axis, and 4 eigen-
values on the real axis. Pictorially, the results of both methods
are equal to the approximations of the eigenvalues found on
the IBM-3090 (O). Except for the three approximations of the
eigenvalues around the bifurcation point, which were found by
both methods with equal accuracy, the results of the complex
IUAM were about 10 times more accurate than the approxima-
tions found by Lanczos.

In the high temperature tokamak plasmas studied in the con-
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FIG. 5. The results of complex [IUAM on a Cray-YMP () and the *‘cor-
rect’”” Alfvén curve (O), for n = 10™* and N = 3216 (¥ = 201).
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text of controlled thermonuclear fusion research, the plasma
resistivity is typically of the order 107* or smaller. Because of
the poor convergence near the bifurcation point, the resistive
spectrum cannot be completely computed for such well-con-
ducting plasmas. Of course, one should try to choose 1 as small
as possible in numerical simulations. In Experiment 3 the same
test case with a smaller resistivity % is considered.

Experiment 3. Consider now a plasma with 7 = 10~ For
this ‘‘low” plasma resistivity a grid with 201 gridpoints was
necessary (N = 3216) to obtain a converged spectrum. Again
this MHD problem was solved by both methods on a Cray-
YMP. Four shifts were considered, oy = (—0.01, 0.60), &5 =
(—0.25, 0.65), on = (—0.50, 0.50), and oy = (~0.60, 0.08).
In the Lanczos method a tridiagonal matrix of order 50 was
repeatedly calculated, and in the compiex [UAM & and p were
taken as 15. The results of both methods are plotied in Figs. 4
and 5. There is a clear difference between the accuracy in the
approximations of the eigenvalues found by the Lanczos
method and the approximations found by the complex IUAM.
Comparing these results with the approximations of the eigen-
values found on the [BM (O}, we note that scattering and the
introduction of spurious eigenvalues occur in the approxima-
tions found by the Lanczos method in Fig. 4. The complex
TUAM discovered 45 good approximations of the eigenvalues
in 20.7 seconds Cray CPU-time, while Lanczos needed 31.8
seconds to find 25 poorly converged approximations for the ei-
genvalues.

5. CONCLUPING REMARKS

To identify specific parts of the eigenvalue spectrum for a
generalized eigenvalue problem

Ax = AByx,

with A a nonsymmetric matrix with real elements and B a
symmetric, positive definite matrix with real elements, we have
considered a complex shift-and-invert sirategy. This leads to a
modified eigenvalue problem

Ax = px,

with A = (A — oB)"'B a complex nonsymmetric matrix, g =
1/{A — o), and orthe used shift. Although computing in complex
arithinetic is more expensive in storage requirements and ¢om-
putational costs than it is in real arithmeltic, it is shown that it
may still be advantageous to work with this complex modified
eigenvalue problem. The complex shift-and-invert strategy may
be applied to the IUAM, which leads to a very accurale eigen-
value solver for the MHD eigenvalue problem. Because of its
orthogonality properties, its relatively low storage require-
ments, and its avoidance of spurious eigenvalues, this method
can compete with any other eigenvalue solver, such as the
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generalized Lanczos method and the A-step Arnoldi methods,
Comparison with a generalized Lanczos method showed a con-
vincing rigor of the complex IUAM.

Our derivations may be extended to more general eigenvalue
problems, but the extension of the IUAM to complex arithimetic
was done in the framework of MHD-spectroscopy (6, 71. The
aim of MHD spectroscopy is a better understanding of the
structure and the dynamics of magnetically confined plasmas.
For this purpose, numerically obtained MHD spectra and com-
puter simulations of the plasma response to external excitation
with an antenna system are compared with experimental obser-
vations of e.g. the dependence of the antenna impedance on
the frequency in a tokamak device.

Clearly, such a comparison ounly makes sense when the nu-
merical simulations are based on realistic theoretical models
which take, among other things, the geometry of the configura-
tion into account. Therefore, the straight tokamak considered
in the present paper is not very well suited for the purpose of
MHD spectroscopy. However, the aim of the present paper was
to announce and explain the complex ITUAM, and the straight
tokamak Alfvén spectra were calculated in order to test and
demonstrate this new eigenvalue solver. As the results are very
promising, we will next tackle the real problem of MHD spec-
troscopy, viz. the determination of the MHD spectrum of axi-
symmetric toroidal plasmas with strongly noncircalar cross
sections. In such a geometry, strong poloidal mode coupling
occurs which has a substantial influence on the MHD spectrum.
However, as a result of the poloidal mode coupling one has to
deal with large matrices which are typically an order of magni-
tude larger than the matrices obtained for cylindrical plasmas
and used for testing the new eigenvalue solver in the present
paper.

This is precisely why a complex itnplementation of the im-
plicitly updated Arnoldi solver was developed. As a matter of
fact, the matrices of the discretized problem become so large
that the QR-method cannot be used because of too large com-
puter memory requirements. In addition, the Lanczos solver
does not yield satisfactory results for such large problems.
However, the complex implementation of the implicitly updated
Amoldi method presented and discussed in this paper may be
a good alternative for this problem and enable the determination
of MHD spectra for realistic tokamak plasmas.
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